(0) Obligation:
The Runtime Complexity (innermost) of the given
CpxTRS could be proven to be
BOUNDS(1, n^2).
The TRS R consists of the following rules:
D(t) → 1
D(constant) → 0
D(+(x, y)) → +(D(x), D(y))
D(*(x, y)) → +(*(y, D(x)), *(x, D(y)))
D(-(x, y)) → -(D(x), D(y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
D(t) → 1
D(constant) → 0
D(+(z0, z1)) → +(D(z0), D(z1))
D(*(z0, z1)) → +(*(z1, D(z0)), *(z0, D(z1)))
D(-(z0, z1)) → -(D(z0), D(z1))
Tuples:
D'(t) → c
D'(constant) → c1
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
S tuples:
D'(t) → c
D'(constant) → c1
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
K tuples:none
Defined Rule Symbols:
D
Defined Pair Symbols:
D'
Compound Symbols:
c, c1, c2, c3, c4
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing nodes:
D'(constant) → c1
D'(t) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
D(t) → 1
D(constant) → 0
D(+(z0, z1)) → +(D(z0), D(z1))
D(*(z0, z1)) → +(*(z1, D(z0)), *(z0, D(z1)))
D(-(z0, z1)) → -(D(z0), D(z1))
Tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
S tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
K tuples:none
Defined Rule Symbols:
D
Defined Pair Symbols:
D'
Compound Symbols:
c2, c3, c4
(5) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
D(t) → 1
D(constant) → 0
D(+(z0, z1)) → +(D(z0), D(z1))
D(*(z0, z1)) → +(*(z1, D(z0)), *(z0, D(z1)))
D(-(z0, z1)) → -(D(z0), D(z1))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
S tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
K tuples:none
Defined Rule Symbols:none
Defined Pair Symbols:
D'
Compound Symbols:
c2, c3, c4
(7) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
We considered the (Usable) Rules:none
And the Tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(*(x1, x2)) = [1] + x1 + x2
POL(+(x1, x2)) = [1] + x1 + x2
POL(-(x1, x2)) = [1] + x1 + x2
POL(D'(x1)) = [1] + x1 + x12
POL(c2(x1, x2)) = x1 + x2
POL(c3(x1, x2)) = x1 + x2
POL(c4(x1, x2)) = x1 + x2
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:none
Tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
S tuples:none
K tuples:
D'(+(z0, z1)) → c2(D'(z0), D'(z1))
D'(*(z0, z1)) → c3(D'(z0), D'(z1))
D'(-(z0, z1)) → c4(D'(z0), D'(z1))
Defined Rule Symbols:none
Defined Pair Symbols:
D'
Compound Symbols:
c2, c3, c4
(9) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(10) BOUNDS(1, 1)